High-speed circuit design is one of the most fundamental, yet challenging areas of electronics design. High-speed circuits are commonly used today, as standards like USB, HDMI, and PCIe require most professional electrical engineers to delve into the world of high speed. Looking to the future, we see a general trend of increasing clock frequencies across the board, meaning high-speed signals will become even more common. If you’re an electronics designer today, there’s simply no avoiding high speed.
High-speed signals introduce extra complexity and unique technical challenges that make designing hardware less straightforward. One of these technical considerations is impedance matching—a unique and lesser-known area of circuit design. In this contribution, I will cover the basics of impedance matching and share 5 tips to ensure that any high-speed circuit design works as intended.
All conductors in an electrical circuit have a characteristic impedance given the aggregated contributions of parasitic capacitance, inductance, and resistance. In most lower-speed systems, the impact of these parasitics is negligible since the effects of inductance and capacitance scale with frequency. However, once frequencies start getting high enough, these parasitics are no longer negligible, and transmission line effects come into play.
7th Edition of International Design Research Awards
website link: design-conferences.sciencefather.com
Nomination Link : https://x-i.me/susnom
Registration Link: https://x-i.me/susreg2
#graphicdesign #webdesign #logodesign #productdesign #digitaldesign
No comments:
Post a Comment